organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,15-Dimethoxy-10-methyltricyclo-[9.4.0.0^{2,7}]pentadeca-1(11),2(7),3,5,-9,12,14-heptaen-8-one

Yaomin Zhu,^a Jianfei Yang,^b Xianfei Li^b and Le Zhou^{b*}

^aSchool of Materials Science and Engineering, Henan University of Science & Technology 471022, People's Republic of China, and ^bCollege of Science, Northwest A&F University, Yangling 712100, People's Republic of China Correspondence e-mail: zhoulechem@yahoo.com.cn

Received 6 July 2011; accepted 2 August 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.090; data-to-parameter ratio = 14.0.

The title molecule, $C_{18}H_{16}O_3$, contains three fused rings, of which the seven-membered cyclohept-2-enone ring has a screw-boat conformation. The two methoxyphenyl rings make a dihedral angle of 50.4 (2)°. In the crystal, molecules are linked by intermolecular $C-H \cdots O$ hydrogen bonds, leading to a three-dimensional supramolecular architecture.

Related literature

The title compound was obtained through an aldol condensation reaction. For general background to aldol reactions, see: Machajewski & Wong (2000); Nelson (1998). For structures with $C-H \cdots O$ hydrogen bonds, see: Broder *et al.* (2002); Senthil Kumar *et al.* (2006).

Experimental

Crystal data C₁₈H₁₆O₃

 $M_r=280.31$

Orthorhombic, $P2_12_12_1$ a = 7.6615 (10) Å b = 12.2005 (16) Å c = 15.545 (2) Å V = 1453.1 (3) Å³

Data collection

Bruker SMART CCD area detector	11119 measured reflections
diffractometer	2708 independent reflections
Absorption correction: multi-scan	2083 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.034$
$T_{\min} = 0.964, \ T_{\max} = 0.986$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 193 parameters $wR(F^2) = 0.090$ H-atom parameters constrainedS = 1.09 $\Delta \rho_{max} = 0.10 \text{ e } \text{\AA}^{-3}$ 2708 reflections $\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.43 \times 0.31 \times 0.17 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 295 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13-H13 B ···O3 ⁱ	0.96	2.40	3.349 (3)	171
$C10-H10\cdots O1^{n}$	0.93	2.58	3.283 (2)	133
Symmetry codes: (i) $-x$	$(1, y) = \frac{1}{2}, -z$	$+\frac{3}{2}$; (ii) $x - \frac{1}{2}$	$-v + \frac{3}{2}, -z + 1.$	155

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are grateful to the National Natural Sciences Foundation of China (grant No. 20872057) and the Natural Science Foundation of Henan Province (No. 082300420040) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2016).

References

- Broder, C. K., Davidson, M. G., Trevor Forsyth, V., Howard, J. A. K., Lamb, S. & Mason, S. A. (2002). Cryst. Growth Des. 2, 163–169.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Machajewski, T. D. & Wong, C. H. (2000). Angew. Chem. Int. Ed. 39, 1352– 1375.
- Nelson, S. G. (1998). Tetrahedron Asymmetry, 9, 357-389.
- Senthil Kumar, V. S., Christopher Pigge, F. & Rath, N. P. (2006). Cryst. Growth Des. 6, 193–196.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o2282 [doi:10.1107/S160053681103100X]

3,15-Dimethoxy-10-methyltricyclo[9.4.0.0^{2,7}]pentadeca-1(11),2(7),3,5,9,12,14-heptaen-8-one

Y. Zhu, J. Yang, X. Li and L. Zhou

Comment

Direct aldol reactions provide an atom-economical approach to create the β -hydroxy carbonyl structural unit found in many natural products and drugs (Machajewski *et al.* 2000; Nelson, 1998.). In our study, we were interested to the intramolecular aldol condensation reaction. To our surprise, the resulting aldol adducts are further dehydrated to afford an enone compound. The title molecule is built up from three fused rings including two phenyl rings and one seven-membered ring (Fig. 1). The non aromatic seven-membered ring has a screw boat conformation. The two methoxyphenyl rings make dihedral angles of 50.4 (2) Å. In the crystal structure, the weak intermolecular C—H···O hydrogen bonds are observed. Thus, molecules are linked to each other by intermolecular C13—H13B···O3 hydrogen bonds (C13···O3 = 3.349 (3) Å), resulting in a one-dimensional chain. The chains are further connected through the formation of intermolecular C10—H10···O1 hydrogen bonds (C10···O1 = 3.283 (2) Å), leading to a three-dimensional supmolecular architecture, as shown in Fig. 2.

Experimental

2,2-dimethoxy-6,6-diacetyl-1,1-biphenyl (298 mm g, 1 mmol) was added to a solution of CH_3CH_2ONa (6.8 mg, 0.1 mmol) and enthanol (5 ml) at room temperature. The mixture was stirred, monitored by TLC. After 8 h, the mixture was extracted by ethyl acetate (3× 15 ml). The resulting solvent was removed *in vacuo* to yield the crude product. Purification by silica gel chromatography using 100 ~200 mesh ZCX II eluted by hexane-ethyl acetate (3:1, v/v) gave the yellow solid (196 mg, yield 70%). The crystalline compound was obtained through the slow volatilization of ethyl acetate containing the title compound.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.93 Å (methylene CH₂), or 0.96 Å (methyl CH₃), and with U iso~(H) = 1.2Ueq(C) or 1.5Ueq(methyl and methylene C).

Figures

Fig. 1. View of the title molecular structure with atom numbering scheme and 50% probability displacement ellipsoids for non-hydrogen atoms.

Fig. 2. View of three-dimensional structure (C—H···O hydrogen bonds are represented as dashed lines).

3,15-Dimethoxy-10-methyltricyclo[9.4.0.0^{2,7}]pentadeca- 1(11),2(7),3,5,9,12,14-heptaen-8-one

Crystal	data
---------	------

C ₁₈ H ₁₆ O ₃	F(000) = 592
$M_r = 280.31$	$D_{\rm x} = 1.281 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2351 reflections
a = 7.6615 (10) Å	$\theta = 2.6 - 22.6^{\circ}$
b = 12.2005 (16) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 15.545 (2) Å	T = 295 K
$V = 1453.1 (3) \text{ Å}^3$	Block, yellow
<i>Z</i> = 4	$0.43 \times 0.31 \times 0.17 \text{ mm}$

Data collection

2708 independent reflections
2083 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.034$
$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
$h = -9 \rightarrow 9$
$k = -14 \rightarrow 14$
$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.090$	H-atom parameters constrained
S = 1.09	$w = 1/[\sigma^2(F_o^2) + (0.0385P)^2 + 0.0759P]$ where $P = (F_o^2 + 2F_c^2)/3$
2708 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
193 parameters	$\Delta \rho_{max} = 0.10 \text{ e } \text{\AA}^{-3}$

0 restraints

 $\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.90746 (18)	0.51793 (11)	0.45436 (10)	0.0617 (4)
O2	0.6310(2)	0.46929 (11)	0.35471 (8)	0.0590 (4)
O3	0.4247 (3)	0.68747 (15)	0.67899 (12)	0.0975 (6)
C1	0.8412 (3)	0.43948 (14)	0.50732 (12)	0.0435 (5)
C2	0.6641 (2)	0.45458 (13)	0.53147 (11)	0.0391 (4)
C3	0.5949 (3)	0.38457 (15)	0.59460 (11)	0.0423 (5)
C4	0.6961 (3)	0.29640 (16)	0.62432 (12)	0.0506 (5)
H4	0.6490	0.2483	0.6645	0.061*
C5	0.8624 (3)	0.27996 (16)	0.59543 (14)	0.0544 (5)
Н5	0.9256	0.2196	0.6147	0.065*
C6	0.9376 (3)	0.35217 (15)	0.53789 (14)	0.0516 (5)
Н6	1.0522	0.3421	0.5199	0.062*
C7	0.5694 (3)	0.55704 (15)	0.39995 (13)	0.0478 (5)
C8	0.5662 (2)	0.54490 (14)	0.48981 (12)	0.0415 (4)
C9	0.4791 (3)	0.62605 (15)	0.53714 (14)	0.0502 (5)
C10	0.4157 (3)	0.72015 (16)	0.49742 (18)	0.0658 (6)
H10	0.3607	0.7740	0.5300	0.079*
C11	0.4340 (3)	0.73350 (19)	0.41045 (19)	0.0756 (7)
H11	0.3966	0.7980	0.3844	0.091*
C12	0.5077 (3)	0.65175 (18)	0.36140 (17)	0.0657 (6)
H12	0.5160	0.6602	0.3021	0.079*
C13	0.3278 (3)	0.3040 (2)	0.66884 (15)	0.0734 (7)
H13A	0.2127	0.3251	0.6867	0.110*
H13B	0.3899	0.2736	0.7169	0.110*
H13C	0.3195	0.2501	0.6240	0.110*
C14	0.4239 (3)	0.40290 (18)	0.63578 (12)	0.0519 (5)

supplementary materials

C15	0.3608 (3)	0.5025 (2)	0.65305 (13)	0.0634 (6)
H15	0.2579	0.5040	0.6848	0.076*
C16	0.4316 (3)	0.6103 (2)	0.62877 (14)	0.0624 (6)
C17	1.0812 (3)	0.5087 (2)	0.42411 (17)	0.0778 (7)
H17A	1.0926	0.4431	0.3904	0.117*
H17B	1.1596	0.5054	0.4722	0.117*
H17C	1.1091	0.5712	0.3893	0.117*
C18	0.6894 (4)	0.4865 (3)	0.26972 (15)	0.0946 (10)
H18A	0.7702	0.5466	0.2687	0.142*
H18B	0.5914	0.5032	0.2335	0.142*
H18C	0.7462	0.4215	0.2491	0.142*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0433 (8)	0.0547 (8)	0.0872 (10)	-0.0025 (7)	0.0133 (8)	0.0130 (8)
O2	0.0767 (10)	0.0580 (8)	0.0422 (8)	0.0003 (8)	0.0094 (7)	0.0039 (7)
03	0.1176 (15)	0.0921 (12)	0.0829 (12)	0.0259 (12)	-0.0124 (11)	-0.0455 (11)
C1	0.0437 (12)	0.0397 (9)	0.0472 (11)	-0.0009 (9)	0.0022 (9)	-0.0023 (8)
C2	0.0390 (10)	0.0380 (9)	0.0403 (10)	-0.0017 (8)	-0.0028 (8)	-0.0037 (8)
C3	0.0445 (11)	0.0457 (10)	0.0367 (9)	-0.0050 (9)	-0.0059 (9)	-0.0040 (8)
C4	0.0575 (14)	0.0501 (11)	0.0442 (12)	-0.0052 (10)	-0.0081 (10)	0.0055 (9)
C5	0.0585 (14)	0.0481 (11)	0.0566 (12)	0.0082 (10)	-0.0117 (11)	0.0036 (10)
C6	0.0429 (12)	0.0533 (11)	0.0586 (13)	0.0059 (10)	-0.0017 (11)	-0.0056 (10)
C7	0.0465 (12)	0.0436 (10)	0.0533 (12)	-0.0009 (10)	-0.0003 (10)	0.0048 (9)
C8	0.0371 (10)	0.0393 (9)	0.0481 (11)	-0.0021 (8)	-0.0021 (9)	-0.0003 (8)
C9	0.0426 (12)	0.0455 (10)	0.0626 (14)	0.0007 (9)	-0.0098 (10)	-0.0103 (10)
C10	0.0577 (14)	0.0449 (12)	0.0949 (19)	0.0099 (11)	-0.0053 (13)	-0.0067 (12)
C11	0.0739 (18)	0.0526 (13)	0.100 (2)	0.0139 (13)	-0.0096 (16)	0.0202 (14)
C12	0.0654 (15)	0.0643 (14)	0.0673 (16)	0.0037 (12)	-0.0007 (13)	0.0209 (13)
C13	0.0571 (15)	0.0989 (18)	0.0641 (15)	-0.0115 (14)	0.0047 (12)	0.0218 (14)
C14	0.0446 (12)	0.0717 (14)	0.0392 (11)	0.0011 (11)	-0.0005 (10)	-0.0001 (10)
C15	0.0490 (13)	0.0945 (18)	0.0467 (12)	0.0074 (13)	0.0045 (11)	-0.0071 (12)
C16	0.0564 (14)	0.0690 (14)	0.0616 (14)	0.0134 (12)	-0.0114 (12)	-0.0210 (12)
C17	0.0504 (14)	0.0781 (16)	0.105 (2)	-0.0057 (13)	0.0223 (14)	0.0109 (15)
C18	0.126 (3)	0.108 (2)	0.0490 (13)	0.030(2)	0.0240 (15)	0.0192 (14)

Geometric parameters (Å, °)

1.361 (2)	C9—C16	1.483 (3)
1.416 (2)	C10-C11	1.369 (3)
1.365 (2)	C10—H10	0.9300
1.411 (3)	C11—C12	1.376 (3)
1.225 (2)	C11—H11	0.9300
1.381 (3)	C12—H12	0.9300
1.419 (3)	C13—C14	1.504 (3)
1.405 (2)	C13—H13A	0.9600
1.482 (2)	C13—H13B	0.9600
1.404 (3)	C13—H13C	0.9600
	1.361 (2) 1.416 (2) 1.365 (2) 1.411 (3) 1.225 (2) 1.381 (3) 1.419 (3) 1.405 (2) 1.482 (2) 1.404 (3)	1.361 (2) C9—C16 1.416 (2) C10—C11 1.365 (2) C10—H10 1.411 (3) C11—C12 1.225 (2) C11—H11 1.381 (3) C12—H12 1.419 (3) C13—C14 1.405 (2) C13—H13B 1.482 (2) C13—H13B 1.404 (3) C13—H13C

C3—C14	1.475 (3)	C14—C15	1.335 (3)
C4—C5	1.366 (3)	C15—C16	1.472 (3)
C4—H4	0.9300	С15—Н15	0.9300
C5—C6	1.381 (3)	С17—Н17А	0.9600
С5—Н5	0.9300	C17—H17B	0.9600
С6—Н6	0.9300	С17—Н17С	0.9600
C7—C12	1.385 (3)	C18—H18A	0.9600
C7—C8	1.405 (3)	C18—H18B	0.9600
C8—C9	1.402 (3)	C18—H18C	0.9600
C9—C10	1.391 (3)		
C1	119.71 (17)	C10—C11—H11	119.9
C7—O2—C18	118.37 (17)	C12—C11—H11	119.9
O1—C1—C6	123.45 (19)	C11—C12—C7	120.3 (2)
O1—C1—C2	115.18 (16)	C11—C12—H12	119.8
C6—C1—C2	121.35 (18)	C7—C12—H12	119.8
C3—C2—C1	117.83 (16)	C14—C13—H13A	109.5
C3—C2—C8	124.46 (17)	C14—C13—H13B	109.5
C1—C2—C8	117.70 (16)	H13A—C13—H13B	109.5
C4—C3—C2	119.13 (18)	C14—C13—H13C	109.5
C4—C3—C14	117.64 (18)	H13A—C13—H13C	109.5
C2—C3—C14	123.12 (17)	H13B—C13—H13C	109.5
C5—C4—C3	121.30 (19)	C15—C14—C3	123.2 (2)
C5—C4—H4	119.3	C15—C14—C13	118.9 (2)
C3—C4—H4	119.3	C3-C14-C13	117.48 (19)
C4—C5—C6	120 54 (19)	C14—C15—C16	128 9 (2)
C4—C5—H5	119.7	C14—C15—H15	115.6
C6-C5-H5	119.7	C16—C15—H15	115.6
C1 - C6 - C5	119 47 (19)	03-C16-C15	120 5 (2)
C1—C6—H6	120 3	03 - C16 - C9	121.5(2)
C5-C6-H6	120.3	$C_{15} - C_{16} - C_{9}$	116 94 (18)
02-C7-C12	123 33 (19)	01-C17-H17A	109.5
02	115 82 (16)	01—C17—H17B	109.5
C12-C7-C8	120 8 (2)	H17A—C17—H17B	109.5
C9-C8-C7	117.10(17)	01-C17-H17C	109.5
C9-C8-C2	122 44 (17)	H17A - C17 - H17C	109.5
C7 - C8 - C2	120.26 (17)	H17B-C17-H17C	109.5
$C_{10} - C_{9} - C_{8}$	121.1 (2)	Ω^2 —C18—H18A	109.5
C10 - C9 - C16	116.6 (2)	Ω^2 —C18—H18B	109.5
C_{8} C_{9} C_{16}	121.94 (18)	H18A - C18 - H18B	109.5
$C_{11} - C_{10} - C_{9}$	121.91(10) 120.0(2)	$\Omega^2 - C_{18} - H_{18}C_{18}$	109.5
C11_C10_H10	120.0 (2)	H18A - C18 - H18C	109.5
C9-C10-H10	120.0	H18B_C18_H18C	109.5
C10-C11-C12	120.2 (2)		107.5
C17_01_C1_C6	36(3)	C_{3} C_{2} C_{8} C_{7}	-132 37 (19)
$C_{17} = 01 = C_{17} = C_{17}$	-17790(18)	C1 - C2 - C8 - C7	49 1 (2)
01 - C1 - C2 - C3	-171 97 (16)	C7 - C8 - C9 - C10	-68(3)
C6-C1-C2-C3	6.6 (3)	$C_2 - C_8 - C_9 - C_{10}$	168 16 (18)
01-C1-C2-C8	6.6 (2)	C7—C8—C9—C16	165.73 (19)
	× /		· · · · · · · · · · · · · · · · · · ·

supplementary materials

C6—C1—C2—C8	-174.83 (16)	C2—C8—C9—C16	-19.3 (3)
C1—C2—C3—C4	-6.6 (2)	C8—C9—C10—C11	1.6 (3)
C8—C2—C3—C4	174.93 (17)	C16—C9—C10—C11	-171.3 (2)
C1—C2—C3—C14	169.41 (17)	C9—C10—C11—C12	3.1 (4)
C8—C2—C3—C14	-9.1 (3)	C10-C11-C12-C7	-2.3 (4)
C2—C3—C4—C5	2.5 (3)	O2—C7—C12—C11	174.6 (2)
C14—C3—C4—C5	-173.75 (18)	C8—C7—C12—C11	-3.2 (3)
C3—C4—C5—C6	2.1 (3)	C4—C3—C14—C15	141.1 (2)
O1—C1—C6—C5	176.20 (18)	C2—C3—C14—C15	-34.9 (3)
C2—C1—C6—C5	-2.2 (3)	C4—C3—C14—C13	-31.5 (2)
C4—C5—C6—C1	-2.2 (3)	C2-C3-C14-C13	152.51 (19)
C18—O2—C7—C12	21.8 (3)	C3-C14-C15-C16	6.9 (3)
C18—O2—C7—C8	-160.3 (2)	C13-C14-C15-C16	179.3 (2)
O2—C7—C8—C9	-170.39 (17)	C14—C15—C16—O3	-141.6 (2)
C12—C7—C8—C9	7.6 (3)	C14—C15—C16—C9	49.7 (3)
O2—C7—C8—C2	14.6 (3)	C10—C9—C16—O3	-37.9 (3)
C12—C7—C8—C2	-167.46 (18)	C8—C9—C16—O3	149.3 (2)
C3—C2—C8—C9	52.8 (3)	C10-C9-C16-C15	130.6 (2)
C1—C2—C8—C9	-125.65 (19)	C8—C9—C16—C15	-42.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C13—H13B···O3 ⁱ	0.96	2.40	3.349 (3)	171.
C10—H10…O1 ⁱⁱ	0.93	2.58	3.283 (2)	133.
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+3/2$; (ii) $x-1/2$, $-y+3/2$, $-z+1$.				

Fig. 2

